Clinical UM Guideline


Subject:  Retinal Telescreening Systems
Guideline #:  CG-MED-35Current Effective Date:  01/14/2014
Status:ReviewedLast Review Date:  11/14/2013

Description

Retinal telescreening systems use a digital fundus camera to photograph the retina. The retinal images can be stored and transferred to a central imaging evaluation center for reading by a trained technician. The imaging can be performed in conjunction with a primary care physician office visit without referral to an ophthalmologist or optometrist. This technology is an alternative to conventional ophthalmologic examination of the retina. This document addresses retinal telescreening for the detection of diabetic retinopathy.

Note: Please see the following related document for additional information:

Clinical Indications

Medically Necessary:

Retinal telescreening systems are considered medically necessary for annual diabetic retinopathy screening as an alternative to retinopathy screening by an ophthalmologist or optometrist when all of the following criteria are met:

Not Medically Necessary:

All other uses of retinal telescreening systems are considered not medically necessary, including, but not limited to those listed below:

Coding

The following codes for treatments and procedures applicable to this document are included below for informational purposes.   Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement policy.  Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

CPT 
92227Remote imaging for detection of retinal disease (eg, retinopathy in a patient with diabetes) with analysis and report under physician supervision, unilateral or bilateral
92228Remote imaging for monitoring and management of active retinal disease (eg, diabetic retinopathy) with physician review, interpretation and report, unilateral or bilateral
  
ICD-9 Diagnosis[For dates of service prior to 10/01/2014]
 All diagnoses
  
ICD-10 Diagnosis[For dates of service on or after 10/01/2014]
 All diagnoses
  
Discussion/General Information

Diabetic retinopathy is a disorder of the retina that eventually will develop to some extent in nearly all individuals with long-standing diabetes. Diabetic retinopathy is estimated to be the most frequent cause of new cases of blindness among adults aged 20-74 years in the United States. It is a highly specific vascular complication occurring in type 1 and type 2 diabetes, with the prevalence being highly dependent upon the duration of the disease. Nearly all individuals with type 1 diabetes and over 60% of individuals with type 2 diabetes who have had lengthy courses of this disease will have some degree of retinopathy. Laser photocoagulation surgery is an established treatment for diabetic retinopathy.

The prevalence rate of diabetic retinopathy for adults over age 40 in the United States is 3.4% or 4.1 million persons. The prevalence rate for vision-threatening diabetic retinopathy is 0.75% or 899,000 persons. For those individuals with type 1 diabetes, the American Diabetes Association (2012) recommends retinopathy screening with yearly retinal examinations within 5 years after diagnosis in adults and children greater than 10 years old. For those individuals with type 2 diabetes, screening is recommended shortly after the diagnosis of diabetes.

Clinical manifestations begin with retinal microaneurysms and hemorrhages progressing to retinal capillary nonperfusion, occlusion of retinal vessels, pathological proliferation of fragile retinal vessels (neovascularization) and macular edema. Visual loss results primarily from macular edema, macular capillary nonperfusion, vitreous hemorrhage, and distortion or traction detachment of the retina.

Diabetic retinopathy has few symptoms until vision loss occurs. Ongoing evaluation for retinopathy is of critical importance to allow for early treatment. The "gold standards" for diabetic retinopathy screening include ophthalmological exam by a trained professional using pupillary dilation and stereoscopic 7-field fundus photography by a trained photographer and interpreted by an experienced grader. Access to the specialist equipment and expertise may not always be available. Retinal telescreening systems have emerged as a way to increase screening for diabetic retinopathy.

Retinal telescreening systems digitally photograph the retina for the evaluation of diabetic retinopathy. Digital retinal images can be transferred electronically to a company site, where non-physician technicians examine and grade the images. Specialized digital imaging cameras are used to obtain wide-field stereoscopic retinal images. The images are transferred electronically to a centralized reading site for retinal image evaluation by trained graders. The results are subsequently transmitted back to the physician's office. Individuals who live in rural areas may have limited access to ophthalmology specialists and subsequently lower rates for screening for diabetic retinopathy. Outreach clinics are a way to screen those individuals without access to specialized equipment and expertise. Community-based, outreach models for diabetic retinopathy screening have been applied in rural and remote areas of Australia, Canada, and the United Kingdom. The model consists of a photograph being taken instead of a direct exam. The photographic images are taken without pupil dilation. The image is interpreted and graded at a different time and place by an ophthalmologist or other trained reader. The outreach model has the potential to increase the screening of at-risk individuals in areas where direct access to ophthalmologic specialists is limited.

An analysis of the literature shows high-resolution digital stereoscopic fundus photographs are comparable in accuracy to plain film stereoscopic fundus photographs (the gold standard). One study with 290 diabetic participants analyzed the detection of threshold events requiring referral, which consisted of an Early Treatment Diabetic Retinopathy Study (EDTRS) severity level greater than or equal to 53, questionable or definite clinically significant macular edema in either eye, or ungradable images (Fransen, 2002). The sensitivity of digital photography in detecting threshold events was 98.2% and the specificity was 89.7%. The positive predictive value was 69.5% and the negative predictive value was 99.5% for this sample. Zimmer-Galler (2006) reported on 2771 individuals with diabetes who had not undergone an eye examination in the past year who were imaged with the DigiScope (EyeTel Imaging, Inc., Centreville, VA) in the primary care physician's office. The authors stated that their study "indicates that implementation of the DigiScope in the primary care setting is practical and allows screening of patients with diabetes who are otherwise not receiving recommended eye examinations." The evidence supporting these conclusions includes well-designed cross-sectional studies.

The "gold standard" of 35 mm film photography has been shown in studies to be equivalent or superior to conventional ophthalmoscopy in detecting diabetic retinopathy. Thus, the relative equivalence of digital imaging to plain film photography shows retinal telescreening systems, if they meet the criteria for medical necessity, can be a valid alternative to conventional exams by an eye specialist. In a literature review on the diagnostic accuracy and reliability of teleophthalmology and conventional clinic-based eye care for detecting diabetic retinopathy, Whited (2006) concluded "teleophthalmology appears to be an accurate and reliable test for detecting diabetic retinopathy and macular edema."

Modern digital cameras can produce quality images with a smaller pupil diameter often eliminating the need to have the pupils dilated. Bragge and colleagues (2011) reported a meta-analysis which examined how pupil dilation and the qualifications of those taking the retinal photographs affect the accuracy of screening for diabetic retinopathy. The analysis included 20 studies which measured the sensitivity and specificity of tests for diabetic retinopathy. Variations in photographer medical qualification did not influence sensitivity. Specificity of detection of diabetic retinopathy was significantly higher for those methods that use a photographer with specialist eye or medical qualifications. Sensitivity or specificity to detect diabetic retinopathy was not influenced by variations in pupillary dilation status. Murgatroyd (2004) reported on the effect of pupillary dilation on screening for diabetic retinopathy. A total of 398 individuals (794) eyes were included. When the pupils were dilated, the proportion of ungradable photographs went from 26% down to 5%. And although undilated pupils led to a higher percentage of photographs which could not be graded, the sensitivity and specificity of those photographs which could be graded were no different for dilated versus undilated pupils.

Digital retinal imaging can be obtained by a trained non-physician photographer in the primary care physician's office, thus obviating the need for separate annual ophthalmology evaluation for diabetic retinopathy. This may increase an individual's adherence to annual retinal exams, a critical component of diabetic care. However, it should be noted retinal telescreening is not a substitute for a comprehensive ophthalmologic examination. In a statement on screening for diabetic retinopathy, the American Academy of Ophthalmology (2012) emphasized, "screening for diabetic retinopathy using appropriately validated digital image technology can be a sensitive and effective methodology" and "It does not mitigate the need for periodic comprehensive ophthalmic examinations." Therefore, digital imaging appears to be a highly sensitive test and may be considered an important option for increasing the screening rate.

References

Peer Reviewed Publications: 

  1. Bragge P, Gruen RL, Chau M, et al. Screening for presence or absence of diabetic retinopathy: a meta-analysis. Arch Ophthalmol. 2011; 129(4):435-444.
  2. Fransen SR, Leonard-Martin, TC, Feuer WJ, et al. Clinical evaluation of patients with diabetic retinopathy: accuracy of the Inoveon diabetic retinopathy-3DT system. Ophthalmology. 2002; 109(3):595-601.
  3. Gomez-Ulla F, Fernandez MI, Gonzalez F, et al. Digital retinal images and teleophthalmology for detecting and grading diabetic retinopathy. Diabetes Care. 2002; 25(8):1384-1389.
  4. Harding SP, Broadbent DM, Neoh C, et al. Sensitivity and specificity of photography and direct ophthalmoscopy in screening for sight threatening eye disease: the Liverpool diabetic eye study. BMJ. 1995; 311(7013):1131-1135.
  5. Hutchinson A, McIntosh A, Peters J, et al. Effectiveness of screening and monitoring tests for diabetic retinopathy – a systematic review. Diabet Med. 2000; 17(7):495-506.
  6. Liesenfeld B, Kohner E, Piehlmeier W, et al. A telemedical approach to the screening of diabetic retinopathy: digital fundus photography. Diabetes Care. 2000; 23(3):345-348.
  7. Lim JI, Labree L, Nichols T, et al. Comparison of nonmydriatic digitized video fundus images with standard 35-mm slides to screen for and identify specific lesions of age-related macular degeneration. Retina. 2002; 22(1):59-64.
  8. Michelson G, Striebel W, Prihoda W, et al. Telemedicine in the control of intra-ocular pressure. J Telemed Telecare. 2000; 6(Suppl. 1):S1:126-S1:128.
  9. Murgatroyd H, Ellingford A, Cox A, et al. Effect of mydriasis and different field strategies on digital image screening of diabetic eye disease. Br J Ophthalmol. 2004; 88(7):920-924.
  10. O'Hare JP, Hopper A, Madhaven C, et al. Adding retinal photography to screening for diabetic retinopathy: a prospective study in primary care. BMJ. 1996; 312(7032):679-682.
  11. Osareh A, Mirmehdi M, Thomas B, et al. Automated identification of diabetic retinal exudates in digital color images. Br J Ophthalmol. 2003; 87(10):1220-1223.
  12. Rudnisky CJ, Hinz BJ, Tennant MTS, et al. High-resolution stereoscopic digital fundus photography versus contact lens biomicroscopy for the detection of clinically significant macular edema. Ophthalmology. 2002; 109(2):267-274.
  13. Saari JM, Summanen P, Kivela T, et al. Sensitivity and specificity of digital retinal images in grading diabetic retinopathy. Acta Ophthalmol Scand 2004; 82(2):126-130.
  14. Tu KL, Palimar P, Sen S, et al. Comparison of optometry vs. digital photography screening for diabetic retinopathy in a single district. Eye. 2004; 18(1):3-8.
  15. Van Leeuwen R, Chakravarthy U, Vingerling JR, et al. Grading of age-related maculopathy for epidemiological studies: is digital imaging as good as 35-mm film? Ophthalmology. 2003; 110(8):1540-1544.
  16. Whited JD. Accuracy and reliability of teleophthalmology for diagnosing diabetic retinopathy and macular edema: a review of the literature. Diabetes Technol Ther. 2006; 8(1):102-111.
  17. Zimmer-Galler I, Zeimer R. Results of implementation of the DigiScope for diabetic retinopathy assessment in the primary care environment. Telemed J E Health. 2006; 12(2):89-98.

Government Agency, Medical Society, and Other Authoritative Publications:

  1. American Academy of Ophthalmology (AAO). Clinical Statement. Screening for diabetic retinopathy. (2012). For additional information visit the AAO website: http://www.aao.org/. Accessed on September 24, 2013.
  2. American Academy of Ophthalmology (AAO). Preferred Practice Pattern®. Diabetic Retinopathy. 2012. For additional information visit the AAO website: http://www.aao.org/. Accessed on September 24, 2013.
  3. American Academy of Ophthalmology (AAO).  Ophthalmic Technology Assessment. Single-field fundus photography for diabetic retinopathy screening. 2004; 111(5):1055-1062.
  4. American Diabetes Association. Standards of medical care in diabetes--2012. Diabetes Care. 2012; 35 Suppl 1:S11-S63. Available at: http://care.diabetesjournals.org/content/35/Supplement_1/S11.full.pdf+html. Accessed on September 24, 2013.
  5. Fong DS, Aiello L, Gardner TW, et al. American Diabetes Association position statement: retinopathy in diabetes. Diabetes Care. 2004; 27:S84-S87.
  6. U.S. Food and Drug Administration 510(k) Premarket Notification Database. Digiscope ophthalmic camera. Summary of Safety and Effectiveness. No. K990205. Rockville, MD: FDA. March 26, 1999. Available at: http://www.accessdata.fda.gov/cdrh_docs/pdf/k990205.pdf. Accessed on September 24, 2013.
Web Sites for Additional Information
  1. National Eye Institute. U.S. National Institutes of Health. Diabetic Retinopathy. Last updated June 2012. Available at: http://www.nei.nih.gov/health/diabetic/retinopathy.asp. Accessed on September 24, 2013.
Index

Diabetic Retinopathy Telescreening
DigiScope Ophthalmic Camera
Digital Fundus Photography
Fundus Photography, Digital
Retinal Telescreening
VISUPAC™ Digital Imaging System

The use of specific product names is illustrative only. It is not intended to be a recommendation of one product over another, and is not intended to represent a complete listing of all products available.

History

Status

Date

Action

Reviewed11/14/2013Medical Policy & Technology Assessment Committee (MPTAC) review. Updated Description and References.
Reviewed11/08/2012MPTAC review. Updated Discussion/General Information, References and Index.
Revised11/17/2011MPTAC review. Removal from medical necessity statement "Pharmacologic dilation of the pupils takes place prior to image capture." Removal from not medically necessary statement "To evaluate the retina through undilated pupils." Updated Discussion/General Information and References.  Updated Coding section; removed S0625 deleted 12/31/2011.
Reviewed11/18/2010MPTAC review. Updated Discussion/General Information, References and Index. Updated Coding section with 01/01/2011 CPT changes.
Reviewed02/25/2010MPTAC review. Updated References and Web Sites.
Reviewed02/26/2009MPTAC review. Updated References and Web Sites. Removed Place of Service.
 10/01/2008Updated Coding section with 10/01/2008 ICD-9 changes.
Reviewed02/21/2008MPTAC review. References updated.
New03/08/2007MPTAC review. Initial document development. Transferred content from MED.00052 Retinal Telescreening Systems; Investigational/Not Medically Necessary indications changed to Not Medically Necessary. References updated.